期刊论文详细信息
Remote Sensing
Assessment of Methods for Land Surface Temperature Retrieval from Landsat-5 TM Images Applicable to Multiscale Tree-Grass Ecosystem Modeling
Lidia Vlassova2  Fernando Perez-Cabello2  Hector Nieto1  Pilar Martín3  David Riaño3 
[1] Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, Copenhagen K DK-1350, Denmark; E-Mail:;GEOFOREST Group, IUCA, Department of Geography and Spatial Management, University of Zaragoza, Spain, Pedro Cerbuna 12, Zaragoza E-50009, Spain; E-Mails:;Centre for Human and Social Sciences, Spanish Council for Scientific Research, Albasanz 26-28, Madrid 28037, Spain; E-Mails:
关键词: land surface temperature;    Landsat;    multitemporal;   
DOI  :  10.3390/rs6054345
来源: mdpi
PDF
【 摘 要 】

Land Surface Temperature (LST) is one of the key inputs for Soil-Vegetation-Atmosphere transfer modeling in terrestrial ecosystems. In the frame of BIOSPEC (Linking spectral information at different spatial scales with biophysical parameters of Mediterranean vegetation in the context of global change) and FLUXPEC (Monitoring changes in water and carbon fluxes from remote and proximal sensing in Mediterranean “dehesa” ecosystem) projects LST retrieved from Landsat data is required to integrate ground-based observations of energy, water, and carbon fluxes with multi-scale remotely-sensed data and assess water and carbon balance in ecologically fragile heterogeneous ecosystem of Mediterranean wooded grassland (dehesa). Thus, three methods based on the Radiative Transfer Equation were used to extract LST from a series of 2009–2011 Landsat-5 TM images to assess the applicability for temperature input generation to a Landsat-MODIS LST integration. When compared to surface temperatures simulated using MODerate resolution atmospheric TRANsmission 5 (MODTRAN 5) with atmospheric profiles inputs (LSTref), values from Single-Channel (SC) algorithm are the closest (root-mean-square deviation (RMSD) = 0.50 °C); procedure based on the online Radiative Transfer Equation Atmospheric Correction Parameters Calculator (RTE-ACPC) shows RMSD = 0.85 °C; Mono-Window algorithm (MW) presents the highest RMSD (2.34 °C) with systematical LST underestimation (bias = 1.81 °C). Differences between Landsat-retrieved LST and MODIS LST are in the range of 2 to 4 °C and can be explained mainly by differences in observation geometry, emissivity, and time mismatch between Landsat and MODIS overpasses. There is a seasonal bias in Landsat-MODIS LST differences due to greater variations in surface emissivity and thermal contrasts between landcover components.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190026101ZK.pdf 1005KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:25次