期刊论文详细信息
Remote Sensing
Time Series Analysis of Land Cover Change: Developing Statistical Tools to Determine Significance of Land Cover Changes in Persistence Analyses
Peter Waylen1  Jane Southworth1  Cerian Gibbes2 
[1] Department of Geography, University of Florida, TUR 3129, Gainesville, FL 32611, USA; E-Mails:;Department of Geography and Environmental Studies, University of Colorado, Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA; E-Mail:
关键词: persistence;    vegetation change;    time-series;    NDVI;    statistical testing;   
DOI  :  10.3390/rs6054473
来源: mdpi
PDF
【 摘 要 】

Despite the existence of long term remotely sensed datasets, change detection methods are limited and often remain an obstacle to the effective use of time series approaches in remote sensing applications to Land Change Science. This paper establishes some simple statistical tests to be applied to NDVI-derived time series of remotely sensed data products. Specifically, the methods determine the statistical significance of three separate metrics of the persistence of vegetation cover or changes within a landscape by comparison to various forms of “benchmarks”; directional persistence (changes in sign relative to some fixed reference value), relative directional persistence (changes in sign relative to the preceding value), and massive persistence (changes in magnitude relative to the preceding value). Null hypotheses are developed on the basis of serially independent, normally distributed random variables. Critical values are established theoretically through consideration of the numeric properties of those variables, application of extensive Monte Carlo simulations, and parallels to random walk processes. Monthly pixel-level NDVI values for the state of Florida are analyzed over 25 years, illustrating the techniques’ abilities to identify areas and/or times of significant change, and facilitate a more detailed understanding of this landscape. The potential power and utility of such techniques is diverse within the area of remote sensing studies and Land Change Science, especially in the context of global change.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190025994ZK.pdf 1578KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:20次