期刊论文详细信息
Energies
A Multi-Element Diffuser Augmented Wind Turbine
Søren Hjort1 
关键词: wind turbine;    diffuser;    power augmentation;    actuator disk CFD;    panel methods;   
DOI  :  10.3390/en7053256
来源: mdpi
PDF
【 摘 要 】

A new class of diffuser augmented wind turbines (DAWTs) is presented. The new diffuser concept exploits aero-dynamic principles for the creation of high-lift airfoil configurations known from the aircraft industry. Combining this with our objective of obtaining a compact power-efficient design has enabled creation of a family of DAWT designs with energy capture potentials which exceed the power efficiency based on the diffuser exit area by 50%. The paper presents the 1D momentum theory governing the DAWTs, and discusses upper limits for power extraction, similar to the Betz limit applicable for bare Horizontal-Axis Wind Turbines (HAWTs). Inviscid axisymmetric panel code calculations are then used to drive the diffuser design towards higher power coefficients. Axisymmetric actuator disk Navier-Stokes calculations reveal the types of stall that inhibit the functionality of the ideal inviscid optimum, leading the design towards the new class of DAWTs. DAWT performance has been differently measured over time, creating confusion. Proper comparison with performance of existing DAWT designs is therefore emphasized. This involves reference to established literature results, and recalculation of earlier DAWT designs in an attempt to project all results onto a common metric.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190025862ZK.pdf 1824KB PDF download
  文献评价指标  
  下载次数:17次 浏览次数:3次