期刊论文详细信息
Materials
Theoretical Estimation of Thermal Effects in Drilling of Woven Carbon Fiber Composite
José D໚z-Álvarez1  Alvaro Olmedo2  Carlos Santiuste2 
[1] Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Avda. Universidad 30, Leganés, Madrid 28911, Spain; E-Mail:;Department of Continuum Media and Structural Analysis, Universidad Carlos III de Madrid, Avda. Universidad 30, Leganés, Madrid 28911, Spain; E-Mails:
关键词: Carbon Fiber Reinforced Polymer (CFRPs);    drilling;    modeling;    thermal effects;   
DOI  :  10.3390/ma7064442
来源: mdpi
PDF
【 摘 要 】

Carbon Fiber Reinforced Polymer (CFRPs) composites are extensively used in structural applications due to their attractive properties. Although the components are usually made near net shape, machining processes are needed to achieve dimensional tolerance and assembly requirements. Drilling is a common operation required for further mechanical joining of the components. CFRPs are vulnerable to processing induced damage; mainly delamination, fiber pull-out, and thermal degradation, drilling induced defects being one of the main causes of component rejection during manufacturing processes. Despite the importance of analyzing thermal phenomena involved in the machining of composites, only few authors have focused their attention on this problem, most of them using an experimental approach. The temperature at the workpiece could affect surface quality of the component and its measurement during processing is difficult. The estimation of the amount of heat generated during drilling is important; however, numerical modeling of drilling processes involves a high computational cost. This paper presents a combined approach to thermal analysis of composite drilling, using both an analytical estimation of heat generated during drilling and numerical modeling for heat propagation. Promising results for indirect detection of risk of thermal damage, through the measurement of thrust force and cutting torque, are obtained.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190025173ZK.pdf 1501KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:20次