期刊论文详细信息
International Journal of Molecular Sciences
Morphology and Quantitative Monitoring of Gene Expression Patterns during Floral Induction and Early Flower Development in Dendrocalamus latiflorus
Xiaoyan Wang1  Xuemei Zhang1  Lei Zhao1 
[1] China Southwest Germplasm Bank of Wild Species, the Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; E-Mails:
关键词: Dendrocalamus latiflorus;    floral induction;    early floral development;    morphological characteristics;    gene expression profiling;    molecular marker;   
DOI  :  10.3390/ijms150712074
来源: mdpi
PDF
【 摘 要 】

The mechanism of floral transition in bamboo remains unclear. Dendrocalamus latiflorus (Bambusease, Bambusoideae, Poaceae) is an economically and ecologically important clumping bamboo in tropical and subtropical areas. We evaluated morphological characteristics and gene expression profiling to study floral induction and early flower development in D. latiflorus. The detailed morphological studies on vegetative buds and floral organography were completed using paraffin sectioning and scanning electron microscopy. The 3 mm floral buds commence the development of stamen primordia and pistil primordium. Furthermore, homologs of floral transition-related genes, including AP1, TFL1, RFL, PpMADS1, PpMADS2, SPL9, FT, ID1, FCA, and EMF2, were detected and quantified by reverse transcriptase PCR and real-time PCR in vegetative and floral buds, respectively. Distinct expression profiles of ten putative floral initiation homologues that corresponded to the developmental stages defined by bud length were obtained and genes were characterized. Six of the genes (including DlTFL1, DlRFL, DlMADS2, DlID1, DlFCA, DlEMF2) showed statistically significant changes in expression during floral transition. DlAP1 demonstrated a sustained downward trend and could serve as a good molecular marker during floral transition in D. latiflorus. The combined analysis provided key candidate markers to track the transition from the vegetative to reproductive phase.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190024687ZK.pdf 2805KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:6次