期刊论文详细信息
Remote Sensing
A Comparison of Advanced Regression Algorithms for Quantifying Urban Land Cover
Akpona Okujeni1  Sebastian van der Linden1  Benjamin Jakimow1  Andreas Rabe1  Jochem Verrelst2 
[1] Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany; E-Mails:;Image Processing Laboratory, University of Valencia, C/Catedrático Agustin Escardino 9, 46980 Valencia, Spain; E-Mail:
关键词: machine learning;    regression;    sub-pixel mapping;    spatial resolution;    imaging spectrometry;    hyperspectral;    urban land cover;   
DOI  :  10.3390/rs6076324
来源: mdpi
PDF
【 摘 要 】

Quantitative methods for mapping sub-pixel land cover fractions are gaining increasing attention, particularly with regard to upcoming hyperspectral satellite missions. We evaluated five advanced regression algorithms combined with synthetically mixed training data for quantifying urban land cover from HyMap data at 3.6 and 9 m spatial resolution. Methods included support vector regression (SVR), kernel ridge regression (KRR), artificial neural networks (NN), random forest regression (RFR) and partial least squares regression (PLSR). Our experiments demonstrate that both kernel methods SVR and KRR yield high accuracies for mapping complex urban surface types, i.e., rooftops, pavements, grass- and tree-covered areas. SVR and KRR models proved to be stable with regard to the spatial and spectral differences between both images and effectively utilized the higher complexity of the synthetic training mixtures for improving estimates for coarser resolution data. Observed deficiencies mainly relate to known problems arising from spectral similarities or shadowing. The remaining regressors either revealed erratic (NN) or limited (RFR and PLSR) performances when comprehensively mapping urban land cover. Our findings suggest that the combination of kernel-based regression methods, such as SVR and KRR, with synthetically mixed training data is well suited for quantifying urban land cover from imaging spectrometer data at multiple scales.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190024313ZK.pdf 2419KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:26次