期刊论文详细信息
Algorithms
Group Sparse Reconstruction of Multi-Dimensional Spectroscopic Imaging in Human Brain in vivo
Brian L. Burns2  Neil E. Wilson1 
[1] Bio-Medical Physics IDP, UCLA, Los Angeles, CA 90025 USA; E-Mail:;Department of Biomedical Engineering, UCLA, Los Angeles, CA 90025 USA; E-Mails:
关键词: group sparsity;    compressed sensing;    Split Bregman;    convex optimization;    spectroscopic imaging;   
DOI  :  10.3390/a7030276
来源: mdpi
PDF
【 摘 要 】

Four-dimensional (4D) Magnetic Resonance Spectroscopic Imaging (MRSI) data combining 2 spatial and 2 spectral dimensions provides valuable biochemical information in vivo; however, its 20–40 min acquisition time is too long to be used for a clinical protocol. Data acquisition can be accelerated by non-uniformly under-sampling (NUS) theplane, but this causes artifacts in the spatial-spectral domain that must be removed by non-linear, iterative reconstruction. Previous work has demonstrated the feasibility of accelerating 4D MRSI data acquisition through NUS and iterative reconstruction using Compressed Sensing (CS), Total Variation (TV), and Maximum Entropy (MaxEnt) reconstruction. Group Sparse (GS) reconstruction is a variant of CS that exploits the structural sparsity of transform coefficients to achieve higher acceleration factors than traditional CS. In this article, we derive a solution to the GS reconstruction problem within the Split Bregman iterative framework that uses arbitrary transform grouping patterns of overlapping or non-overlapping groups. The 4D Echo-Planar Correlated Spectroscopic Imaging (EP-COSI) gray matter brain phantom and in vivo brain data are retrospectively under-sampled 2×, 4×, 6×, 8×, and 10× and reconstructed using CS, TV, MaxEnt, and GS with overlapping or non-overlapping groups. Results show that GS reconstruction with overlapping groups outperformed the other reconstruction methods at each NUS rate for both phantom and in vivo data. These results can potentially reduce the scan time of a 4D EP-COSI brain scan from 40 min to under 5 min in vivo.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190024225ZK.pdf 11706KB PDF download
  文献评价指标  
  下载次数:19次 浏览次数:18次