Four-dimensional (4D) Magnetic Resonance Spectroscopic Imaging (MRSI) data combining 2 spatial and 2 spectral dimensions provides valuable biochemical information in vivo; however, its 20–40 min acquisition time is too long to be used for a clinical protocol. Data acquisition can be accelerated by non-uniformly under-sampling (NUS) theplane, but this causes artifacts in the spatial-spectral domain that must be removed by non-linear, iterative reconstruction. Previous work has demonstrated the feasibility of accelerating 4D MRSI data acquisition through NUS and iterative reconstruction using Compressed Sensing (CS), Total Variation (TV), and Maximum Entropy (MaxEnt) reconstruction. Group Sparse (GS) reconstruction is a variant of CS that exploits the structural sparsity of transform coefficients to achieve higher acceleration factors than traditional CS. In this article, we derive a solution to the GS reconstruction problem within the Split Bregman iterative framework that uses arbitrary transform grouping patterns of overlapping or non-overlapping groups. The 4D Echo-Planar Correlated Spectroscopic Imaging (EP-COSI) gray matter brain phantom and in vivo brain data are retrospectively under-sampled 2×, 4×, 6×, 8×, and 10× and reconstructed using CS, TV, MaxEnt, and GS with overlapping or non-overlapping groups. Results show that GS reconstruction with overlapping groups outperformed the other reconstruction methods at each NUS rate for both phantom and in vivo data. These results can potentially reduce the scan time of a 4D EP-COSI brain scan from 40 min to under 5 min in vivo.