Remote Sensing | |
Mineral Classification of Land Surface Using Multispectral LWIR and Hyperspectral SWIR Remote-Sensing Data. A Case Study over the Sokolov Lignite Open-Pit Mines, the Czech Republic | |
Gila Notesco3  Veronika Kopačková1  Petr Rojík2  Guy Schwartz3  Ido Livne3  | |
[1] Department of Remote sensing, Czech Geological Survey, Prague 1 11821, |
|
关键词: AHS; airborne remote-sensing; LWIR multispectral remote-sensing; SWIR hyperspectral remote-sensing; Sokolov open-pit mine; land emissivity; mineral mapping; | |
DOI : 10.3390/rs6087005 | |
来源: mdpi | |
【 摘 要 】
Remote-sensing techniques offer an efficient alternative for mapping mining environments and assessing the impacts of mining activities. Airborne multispectral data in the thermal region and hyperspectral data in the optical region, acquired with the Airborne Hyperspectral Scanner (AHS) sensor over the Sokolov lignite open-pit mines in the Czech Republic, were analyzed. The emissivity spectrum was calculated for each vegetation-free land pixel in the longwave infrared (LWIR)-region image using the surface-emitted radiation, and the reflectance spectrum was derived from the visible, near-infrared and shortwave-infrared (VNIR–SWIR)-region image using the solar radiation reflected from the surface, after applying atmospheric correction. The combination of calculated emissivity, with the ability to detect quartz, and SWIR reflectance spectra, detecting phyllosilicates and kaolinite in particular, enabled estimating the content of the dominant minerals in the exposed surface. The difference between the emissivity values at λ = 9.68 µm and 8.77 µm was found to be a useful index for estimating the relative amount of quartz in each land pixel in the LWIR image. The absorption depth at around 2.2 µm in the reflectance spectra was used to estimate the relative amount of kaolinite in each land pixel in the SWIR image. The resulting maps of the spatial distribution of quartz and kaolinite were found to be in accordance with the geological nature and origin of the exposed surfaces and demonstrated the benefit of using data from both thermal and optical spectral regions to map the abundance of the major minerals around the mines.
【 授权许可】
CC BY
© 2014 by the authors; licensee MDPI, Basel, Switzerland
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190023364ZK.pdf | 16815KB | download |