期刊论文详细信息
Entropy
Information Anatomy of Stochastic Equilibria
Sarah Marzen1 
[1] Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA
关键词: Langevin equation;    entropy rate;    ephemeral information;    bound information;    time-local predictive information;   
DOI  :  10.3390/e16094713
来源: mdpi
PDF
【 摘 要 】

A stochastic nonlinear dynamical system generates information, as measured by its entropy rate. Some—the ephemeral information—is dissipated and some—the bound information—is actively stored and so affects future behavior. We derive analytic expressions for the ephemeral and bound information in the limit of infinitesimal time discretization for two classical systems that exhibit dynamical equilibria: first-order Langevin equations (i) where the drift is the gradient of an analytic potential function and the diffusion matrix is invertible and (ii) with a linear drift term (Ornstein–Uhlenbeck), but a noninvertible diffusion matrix. In both cases, the bound information is sensitive to the drift and diffusion, while the ephemeral information is sensitive only to the diffusion matrix and not to the drift. Notably, this information anatomy changes discontinuously as any of the diffusion coefficients vanishes, indicating that it is very sensitive to the noise structure. We then calculate the information anatomy of the stochastic cusp catastrophe and of particles diffusing in a heat bath in the overdamped limit, both examples of stochastic gradient descent on a potential landscape. Finally, we use our methods to calculate and compare approximations for the time-local predictive information for adaptive agents.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190022535ZK.pdf 2318KB PDF download
  文献评价指标  
  下载次数:18次 浏览次数:61次