期刊论文详细信息
Sensors
Performance of SOI Bragg Grating Ring Resonator for Nonlinear Sensing Applications
Francesco De Leonardis1  Carlo Edoardo Campanella1  Benedetto Troia1  Anna Gina Perri2 
[1] Photonics Research Group, Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico di Bari, via E. Orabona n. 4, 70125 Bari, Italy; E-Mails:;Laboratorio di Dispositivi Elettronici, Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico di Bari, via E. Orabona n. 4, 70125 Bari, Italy; E-Mail:
关键词: integrated optics;    optical waveguides;    nonlinear optics;    sensors;    coupled resonators;   
DOI  :  10.3390/s140916017
来源: mdpi
PDF
【 摘 要 】

In this paper, a spectroscopic sensor formed by a silicon-on-insulator waveguiding Bragg grating ring resonator working in linear and non-linear regime is proposed. In linear regime, the device shows a spectral response characterized by a photonic band gap (PBG). Very close to the band gap edges, the resonant structure exhibits split modes having a splitting magnitude equal to the PBG spectral extension, whose characteristics can be exploited to obtain a RI optical sensor almost insensitive to the fabrication tolerances and environmental perturbations. When the device operates in nonlinear regime, exactly in the spectral region showing the split resonant modes, the RI sensing performance is strongly improved with respect to the linear regime. This improvement, demonstrated by taking into account all the non-linear effects excited in the integrated silicon structure (i.e., Two Photon Absorption (TPA), TPA-induced Free Carrier Absorption, plasma dispersion, Self-Phase-Modulation and Cross-Phase-Modulation effects as induced by Kerr nonlinearity) as well as the deleterious thermal and stress effects, allows enhancing the performance of the RI split mode resonant sensors, while achieving good immunity to the fabrication tolerances and environmental perturbations. The improvement in terms of sensor resolution can be at least one order of magnitude, still without using optimal parameters.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190022439ZK.pdf 906KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:21次