期刊论文详细信息
Sensors
Implementation of a Rotational Ultrasound Biomicroscopy System Equipped with a High-Frequency Angled Needle Transducer — Ex Vivo Ultrasound Imaging of Porcine Ocular Posterior Tissues
Tae-Hoon Bok2  Juho Kim1  Jinho Bae1  Chong Hyun Lee1 
[1] Department of Ocean System Engineering, Jeju National Univeristy, 102 Jejudaehak-ro, Jeju-si, Jeju-do 690-756, Korea; E-Mails:;Department of Physics, Ryerson University, 350 Victoria Street, Toronto, ON M5B 0A5, Canada; E-Mail:
关键词: high-frequency ultrasound;    rotational scanning;    angled needle transducer;    automatic motion control;   
DOI  :  10.3390/s140917807
来源: mdpi
PDF
【 摘 要 】

The mechanical scanning of a single element transducer has been mostly utilized for high-frequency ultrasound imaging. However, it requires space for the mechanical motion of the transducer. In this paper, a rotational scanning ultrasound biomicroscopy (UBM) system equipped with a high-frequency angled needle transducer is designed and implemented in order to minimize the space required. It was applied to ex vivo ultrasound imaging of porcine posterior ocular tissues through a minimal incision hole of 1 mm in diameter. The retina and sclera for the one eye were visualized in the relative rotating angle range of 270° ∼ 330° and at a distance range of 6 ∼ 7 mm, whereas the tissues of the other eye were observed in relative angle range of 160° ∼ 220° and at a distance range of 7.5 ∼ 9 mm. The layer between retina and sclera seemed to be bent because the distance between the transducer tip and the layer was varied while the transducer was rotated. Certin features of the rotation system such as the optimal scanning angle, step angle and data length need to be improved for ensure higher accuracy and precision. Moreover, the focal length should be considered for the image quality. This implementation represents the first report of a rotational scanning UBM system.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190021717ZK.pdf 3782KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:3次