期刊论文详细信息
Sensors
Evaluating Classifiers to Detect Arm Movement Intention from EEG Signals
Daniel Planelles1  Enrique Hortal1  Álvaro Costa2  Andrés �2  Eduardo Iá༞z2 
[1] Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Avda. de la Universidad S/N, 03202, Elche (Alicante), Spain;
关键词: brain-computer interface;    ERD;    movement intention;    classifier;   
DOI  :  10.3390/s141018172
来源: mdpi
PDF
【 摘 要 】

This paper presents a methodology to detect the intention to make a reaching movement with the arm in healthy subjects before the movement actually starts. This is done by measuring brain activity through electroencephalographic (EEG) signals that are registered by electrodes placed over the scalp. The preparation and performance of an arm movement generate a phenomenon called event-related desynchronization (ERD) in the mu and beta frequency bands. A novel methodology to characterize this cognitive process based on three sums of power spectral frequencies involved in ERD is presented. The main objective of this paper is to set the benchmark for classifiers and to choose the most convenient. The best results are obtained using an SVM classifier with around 72% accuracy. This classifier will be used in further research to generate the control commands to move a robotic exoskeleton that helps people suffering from motor disabilities to perform the movement. The final aim is that this brain-controlled robotic exoskeleton improves the current rehabilitation processes of disabled people.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190021192ZK.pdf 803KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:16次