期刊论文详细信息
Remote Sensing
Assessing the Performance of MODIS NDVI and EVI for Seasonal Crop Yield Forecasting at the Ecodistrict Scale
Louis Kouadio2  Nathaniel K. Newlands2  Andrew Davidson1  Yinsuo Zhang1 
[1] AgroClimate, Geomatics, and Earth Observations Division (ACGEO), S&T, AAFC, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; E-Mails:;Science and Technology Branch (S & T), Agriculture and Agri-Food Canada (AAFC), Lethbridge Research Centre, 5403 1st Avenue South, P.O. Box 3000, Lethbridge, AB T1J 4B1, Canada
关键词: ecodistrict;    yield forecasting;    MODIS;    ICCYF;    spring wheat;   
DOI  :  10.3390/rs61010193
来源: mdpi
PDF
【 摘 要 】

Crop yield forecasting plays a vital role in coping with the challenges of the impacts of climate change on agriculture. Improvements in the timeliness and accuracy of yield forecasting by incorporating near real-time remote sensing data and the use of sophisticated statistical methods can improve our capacity to respond effectively to these challenges. The objectives of this study were (i) to investigate the use of derived vegetation indices for the yield forecasting of spring wheat (Triticum aestivum L.) from the Moderate resolution Imaging Spectroradiometer (MODIS) at the ecodistrict scale across Western Canada with the Integrated Canadian Crop Yield Forecaster (ICCYF); and (ii) to compare the ICCYF-model based forecasts and their accuracy across two spatial scales-the ecodistrict and Census Agricultural Region (CAR), namely in CAR with previously reported ICCYF weak performance. Ecodistricts are areas with distinct climate, soil, landscape and ecological aspects, whereas CARs are census-based/statistically-delineated areas. Agroclimate variables combined respectively with MODIS-NDVI and MODIS-EVI indices were used as inputs for the in-season yield forecasting of spring wheat during the 2000–2010 period. Regression models were built based on a procedure of a leave-one-year-out. The results showed that both agroclimate + MODIS-NDVI and agroclimate + MODIS-EVI performed equally well predicting spring wheat yield at the ECD scale. The mean absolute error percentages (MAPE) of the models selected from both the two data sets ranged from 2% to 33% over the study period. The model efficiency index (MEI) varied between −1.1 and 0.99 and −1.8 and 0.99, respectively for the agroclimate + MODIS-NDVI and agroclimate + MODIS-EVI data sets. Moreover, significant improvement in forecasting skill (with decreasing MAPE of 40% and 5 times increasing MEI, on average) was obtained at the finer, ecodistrict spatial scale, compared to the coarser CAR scale. Forecast models need to consider the distribution of extreme values of predictor variables to improve the selection of remote sensing indices. Our findings indicate that statistical-based forecasting error could be significantly reduced by making use of MODIS-EVI and NDVI indices at different times in the crop growing season and within different sub-regions.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190020456ZK.pdf 8789KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:1次