期刊论文详细信息
Water
Application of Displacement Height and Surface Roughness Length to Determination Boundary Layer Development Length over Stepped Spillway
Xiangju Cheng1  John S. Gulliver2  Dantong Zhu1 
[1] School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China; E-Mail:;St. Anthony Falls Laboratory, Department of Civil Engineering, University of Minnesota, Minneapolis, MN 55112, USA; E-Mail:
关键词: displacement height;    surface roughness length;    stepped spillway;    boundary layer development;    numerical simulations;    logarithmic law;    inception of air entrainment;   
DOI  :  10.3390/w6123888
来源: mdpi
PDF
【 摘 要 】

One of the most uncertain parameters in stepped spillway design is the length (from the crest) of boundary layer development. The normal velocity profiles responding to the steps as bed roughness are investigated in the developing non-aerated flow region. A detailed analysis of the logarithmic vertical velocity profiles on stepped spillways is conducted through experimental data to verify the computational code and numerical experiments to expand the data available. To determine development length, the hydraulic roughness and displacement thickness, along with the shear velocity, are needed. This includes determining displacement height d and surface roughness length z0 and the relationship of d and z0 to the step geometry. The results show that the hydraulic roughness height ks is the primary factor on which d and z0 depend. In different step height, step width, discharge and intake Froude number, the relations d/ks = 0.22–0.27, z0/ks = 0.06–0.1 and d/z0 = 2.2–4 result in a good estimate. Using the computational code and numerical experiments, air inception will occur over stepped spillway flow as long as the Bauer-defined boundary layer thickness is between 0.72 and 0.79.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190018748ZK.pdf 1081KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:17次