期刊论文详细信息
Remote Sensing
Complementarity of Two Rice Mapping Approaches: Characterizing Strata Mapped by Hypertemporal MODIS and Rice Paddy Identification Using Multitemporal SAR
Sonia Asilo3  Kees (C.A.J.M.) de Bie3  Andrew Skidmore3  Andrew Nelson1  Massimo Barbieri2  Aileen Maunahan1  Yoshio Inoue4 
[1] International Rice Research Institute (IRRI), Los Baños 4031, Philippines; E-Mails:;sarmap, Purasca 6989, Switzerland; E-Mail:;Faculty of Geo-Information and Earth Observation (ITC), University of Twente, Enschede 7500 AE, The Netherlands; E-Mails:Faculty of Geo-Information and Earth Observation (ITC), University of Twente, Enschede 7500 AE, The Netherlands;
关键词: rice;    backscatter;    characterization;    crop calendars;    phenology;    flooding;    X-band;    COSMO-SkyMed;    TerraSAR-X;    MODIS;   
DOI  :  10.3390/rs61212789
来源: mdpi
PDF
【 摘 要 】

Different rice crop information can be derived from different remote sensing sources to provide information for decision making and policies related to agricultural production and food security. The objective of this study is to generate complementary and comprehensive rice crop information from hypertemporal optical and multitemporal high-resolution SAR imagery. We demonstrate the use of MODIS data for rice-based system characterization and X-band SAR data from TerraSAR-X and CosmoSkyMed for the identification and detailed mapping of rice areas and flooding/transplanting dates. MODIS was classified using ISODATA to generate cropping calendar, cropping intensity, cropping pattern and rice ecosystem information. Season and location specific thresholds from field observations were used to generate detailed maps of rice areas and flooding/transplanting dates from the SAR data. Error matrices were used for the accuracy assessment of the MODIS-derived rice characteristics map and the SAR-derived detailed rice area map, while Root Mean Square Error (RMSE) and linear correlation were used to assess the TSX-derived flooding/transplanting dates. Results showed that multitemporal high spatial resolution SAR data is effective for mapping rice areas and flooding/transplanting dates with an overall accuracy of 90% and a kappa of 0.72 and that hypertemporal moderate-resolution optical imagery is effective for the basic characterization of rice areas with an overall accuracy that ranged from 62% to 87% and a kappa of 0.52 to 0.72. This study has also provided the first assessment of the temporal variation in the backscatter of rice from CSK and TSX using large incidence angles covering all rice crop stages from pre-season until harvest. This complementarity in optical and SAR data can be further exploited in the near future with the increased availability of space-borne optical and SAR sensors. This new information can help improve the identification of rice areas.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190018314ZK.pdf 6841KB PDF download
  文献评价指标  
  下载次数:20次 浏览次数:37次