Structural Diversity of the Microbial Surfactin Derivatives from Selective Esterification Approach
Chuanshi Shao2 
Lin Liu2 
Hongze Gang2 
Shizhong Yang2 
Bozhong Mu1 
[1] State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, China;
Surfactin originated from genus Bacillus is composed of a heptapeptide moiety bonded to the carboxyl and hydroxyl groups of a β-hydroxy fatty acid and it can be chemically modified to prepare the derivatives with different structures, owing to the existence of two free carboxyl groups in its peptide loop. This article presents the chemical modification of surfactin esterified with three different alcohols, and nine novel surfactin derivatives have been separated from products by the high performance liquid chromatography (HPLC). The novel derivatives, identified with Fourier transform infrared spectroscopy (FT-IR) and electrospray ionization mass spectrometry (ESI-MS), are the mono-hexyl-surfactin C14 ester, mono-hexyl-surfactin C15 ester, mono-2-methoxy-ethyl-surfactin C14 ester, di-hexyl-surfactin C14 ester, di-hexyl-surfactin ester C15, di-2-methoxy-ethyl-surfactin ester C14, di-2-methoxy-ethyl-surfactin ester C15, di-6-hydoxyl-hexyl-surfactin C14 ester and, di-6-hydoxyl-hexyl-surfactin C15 ester. The reaction conditions for esterification were optimized and the dependence of yields on different alcohols and catalysts were discussed. This study shows that esterification is one of the most efficient ways of chemical modification for surfactin and it can be used to prepare more derivatives to meet the needs of study in biological and interfacial activities.