Climate | |
Probabilistic Precipitation Estimation with a Satellite Product | |
Nir Y. Krakauer2  Soni M. Pradhanang1  Jeeban Panthi3  Tarendra Lakhankar2  | |
[1] Department of Geosciences, University of Rhode Island, Kingston, RI 02888, USA; E-Mail:;Department of Civil Engineering and NOAA-CREST, The City College of New York, New York, NY 10031, USA;The Small Earth Nepal, Kathmandu 44600, Nepal; E-Mail: | |
关键词: quantitative precipitation estimation; generalized linear model; Nepal; himalayas; monsoon Asia; | |
DOI : 10.3390/cli3020329 | |
来源: mdpi | |
【 摘 要 】
Satellite-based precipitation products have been shown to represent precipitation well over Nepal at monthly resolution, compared to ground-based stations. Here, we extend our analysis to the daily and subdaily timescales, which are relevant for mapping the hazards caused by storms as well as drought. We compared the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42RT product with individual stations and with the gridded APHRODITE product to evaluate its ability to retrieve different precipitation intensities. We find that 3B42RT, which is freely available in near real time, has reasonable correspondence with ground-based precipitation products on a daily timescale; rank correlation coefficients approach 0.6, almost as high as the retrospectively calibrated TMPA 3B42 product. We also find that higher-quality ground and satellite precipitation observations improve the correspondence between the two on the daily timescale, suggesting opportunities for improvement in satellite-based monitoring technology. Correlation of 3B42RT and 3B42 with station observations is lower on subdaily timescales, although the mean diurnal cycle of precipitation is roughly correct. We develop a probabilistic precipitation monitoring methodology that uses previous observations (climatology) as well as 3B42RT as input to generate daily precipitation accumulation probability distributions at each 0.25° × 0.25° grid cell in Nepal and surrounding areas. We quantify the information gain associated with using 3B42RT in the probabilistic model instead of relying only on climatology and show that the quantitative precipitation estimates produced by this model are well calibrated compared to APHRODITE.
【 授权许可】
CC BY
© 2015 by the authors; licensee MDPI, Basel, Switzerland.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190013332ZK.pdf | 609KB | download |