期刊论文详细信息
Brain Sciences
The Hypothermic Influence on CHOP and Ero1-α in an Endoplasmic Reticulum Stress Model of Cerebral Ischemia
Gagandip K. Poone2  Henrik Hasseldam2  Nina Munkholm2  Rune S. Rasmussen2  Nina V. Grønberg2  Flemming F. Johansen1 
[1] Department of Biomedical Sciences and Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200, Denmark;
关键词: brain ischemia;    unfolded protein response;    transcription factor CHOP;    Ero1-α protein;    hypoxia-inducible factor-proline dioxygenases;    stroke;   
DOI  :  10.3390/brainsci5020178
来源: mdpi
PDF
【 摘 要 】

Hypoxia induced endoplasmic reticulum stress causes accumulation of unfolded proteins in the endoplasmic reticulum and activates the unfolded protein response, resulting in apoptosis through CCAAT-enhancer-binding protein homologous protein (CHOP) activation. In an in vitro and in vivo model of ischemic stroke, we investigated whether hypothermia regulates the unfolded protein response of CHOP and Endoplasmic reticulum oxidoreductin-α (Ero1-α), because Ero1-α is suggested to be a downstream CHOP target. The gene expression of CHOP and Ero1-α was measured using Quantitative-PCR (Q-PCR) in rat hippocampi following global cerebral ischemia, and in hypoxic pheochromocytoma cells during normothermic (37 °C) and hypothermic (31 °C) conditions. As a result of ischemia, a significant increase in expression of CHOP and Ero1-α was observed after three, six and twelve hours of reperfusion following global ischemia. A stable increase in CHOP expression was observed throughout the time course (p < 0.01, p < 0.0001), whereas Ero1-α expression peaked at three to six hours (p < 0.0001). Induced hypothermia in hypoxia stressed PC12 cells resulted in a decreased expression of CHOP after three, six and twelve hours (p < 0.0001). On the contrary, the gene expression of Ero1-α increased as a result of hypothermia and peaked at twelve hours (p < 0.0001). Hypothermia attenuated the expression of CHOP, supporting that hypothermia suppress endoplasmic reticulum stress induced apoptosis in stroke. As hypothermia further induced up-regulation of Ero1-α, and since CHOP and Ero1-α showed differential regulation as a consequence of both disease (hypoxia) and treatment (hypothermia), we conclude that they are regulated independently.

【 授权许可】

CC BY   
© 2015 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190012571ZK.pdf 362KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:4次