期刊论文详细信息
Computation
Engineering-Based Thermal CFD Simulations on Massive Parallel Systems
Jérôme Frisch1  Ralf-Peter Mundani2  Ernst Rank2  Christoph van Treeck1 
[1] Energy Efficient and Sustainable Building E3D, RWTH Aachen University, Mathieustraße 30, 52074 Aachen, Germany; E-Mail:;Computation in Engineering, Technische Universität München, Arcisstraße 21, 80333 München, Germany; E-Mails:
关键词: parallel computing;    computational fluid dynamics;    Navier–Stokes equations;    multi-grid-like solving approach;    thermal coupling;    Boussinesq approximation;   
DOI  :  10.3390/computation3020235
来源: mdpi
PDF
【 摘 要 】

The development of parallel Computational Fluid Dynamics (CFD) codes is a challenging task that entails efficient parallelization concepts and strategies in order to achieve good scalability values when running those codes on modern supercomputers with several thousands to millions of cores. In this paper, we present a hierarchical data structure for massive parallel computations that supports the coupling of a Navier–Stokes-based fluid flow code with the Boussinesq approximation in order to address complex thermal scenarios for energy-related assessments. The newly designed data structure is specifically designed with the idea of interactive data exploration and visualization during runtime of the simulation code; a major shortcoming of traditional high-performance computing (HPC) simulation codes. We further show and discuss speed-up values obtained on one of Germany’s top-ranked supercomputers with up to 140,000 processes and present simulation results for different engineering-based thermal problems.

【 授权许可】

CC BY   
© 2015 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190012070ZK.pdf 6724KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:14次