期刊论文详细信息
Entropy
Contribution to Transfer Entropy Estimation via the k-Nearest-Neighbors Approach
Jie Zhu1  Jean-Jacques Bellanger1  Huazhong Shu2  Régine Le Bouquin Jeannès1 
[1] Institut National de la Santé Et de la Recherche Médicale (INSERM), U 1099, Rennes F-35000, France; E-Mails:;Centre de Recherche en Information Biomédicale sino-français (CRIBs), Rennes F-35000, France
关键词: entropy estimation;    k nearest neighbors;    transfer entropy;    bias reduction;   
DOI  :  10.3390/e17064173
来源: mdpi
PDF
【 摘 要 】

This paper deals with the estimation of transfer entropy based on the k-nearest neighbors (k-NN) method. To this end, we first investigate the estimation of Shannon entropy involving a rectangular neighboring region, as suggested in already existing literature, and develop two kinds of entropy estimators. Then, applying the widely-used error cancellation approach to these entropy estimators, we propose two novel transfer entropy estimators, implying no extra computational cost compared to existing similar k-NN algorithms. Experimental simulations allow the comparison of the new estimators with the transfer entropy estimator available in free toolboxes, corresponding to two different extensions to the transfer entropy estimation of the Kraskov–Stögbauer–Grassberger (KSG) mutual information estimator and prove the effectiveness of these new estimators.

【 授权许可】

CC BY   
© 2015 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190010718ZK.pdf 749KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:12次