期刊论文详细信息
Symmetry
Bäcklund Transformations for Integrable Geometric Curve Flows
Changzheng Qu2  Jingwei Han1  Jing Kang3 
[1] School of Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; E-Mail:;Department of Mathematics, Ningbo University, Ningbo 315211, China;Department of Mathematics, Northwest University, Xi’an 710069, China; E-Mail:
关键词: invariant geometric flow;    Bäcklund transformation;    integrable system;    differential invariant;   
DOI  :  10.3390/sym7031376
来源: mdpi
PDF
【 摘 要 】

We study the Bäcklund transformations of integrable geometric curve flows in certain geometries. These curve flows include the KdV and Camassa-Holm flows in the two-dimensional centro-equiaffine geometry, the mKdV and modified Camassa-Holm flows in the two-dimensional Euclidean geometry, the Schrödinger and extended Harry-Dym flows in the three-dimensional Euclidean geometry and the Sawada-Kotera flow in the affine geometry, etc. Using the fact that two different curves in a given geometry are governed by the same integrable equation, we obtain Bäcklund transformations relating to these two integrable geometric flows. Some special solutions of the integrable systems are used to obtain the explicit Bäcklund transformations.

【 授权许可】

CC BY   
© 2015 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190008541ZK.pdf 252KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:19次