期刊论文详细信息
Algorithms
Gradient-Based Iterative Identification for Wiener Nonlinear Dynamic Systems with Moving Average Noises
Lincheng Zhou2  Xiangli Li1  Huigang Xu2  Peiyi Zhu2 
[1] School of Electrical and Automatic Engineering, Changshu Institute of Technology, Hushan Road No.99, Changshu 215500, China;
关键词: nonlinear dynamic system;    stochastic gradient;    iterative algorithm;    output error moving average;    parameter estimation;   
DOI  :  10.3390/a8030712
来源: mdpi
PDF
【 摘 要 】

This paper focuses on the parameter identification problem for Wiener nonlinear dynamic systems with moving average noises. In order to improve the convergence rate, the gradient-based iterative algorithm is presented by replacing the unmeasurable variables with their corresponding iterative estimates, and to compute iteratively the noise estimates based on the obtained parameter estimates. The simulation results show that the proposed algorithm can effectively estimate the parameters of Wiener systems with moving average noises.

【 授权许可】

CC BY   
© 2015 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190007247ZK.pdf 242KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:10次