Sensors | |
Research on the Sensing Performance of the Tuning Fork-Probe as a Micro Interaction Sensor | |
Fengli Gao1  Xide Li1  | |
[1] Department of Engineering Mechanics, AML, Tsinghua University, Beijing 100084, China; E-Mail: | |
关键词: tuning fork; scanning near-field optical microscopy; finite element method; force or interaction sensing harmonic response; | |
DOI : 10.3390/s150924530 | |
来源: mdpi | |
【 摘 要 】
The shear force position system has been widely used in scanning near-field optical microscopy (SNOM) and recently extended into the force sensing area. The dynamic properties of a tuning fork (TF), the core component of this system, directly determine the sensing performance of the shear positioning system. Here, we combine experimental results and finite element method (FEM) analysis to investigate the dynamic behavior of the TF probe assembled structure (TF-probe). Results from experiments under varying atmospheric pressures illustrate that the oscillation amplitude of the TF-probe is linearly related to the quality factor, suggesting that decreasing the pressure will dramatically increase the quality factor. The results from FEM analysis reveal the influences of various parameters on the resonant performance of the TF-probe. We compared numerical results of the frequency spectrum with the experimental data collected by our recently developed laser Doppler vibrometer system. Then, we investigated the parameters affecting spatial resolution of the SNOM and the dynamic response of the TF-probe under longitudinal and transverse interactions. It is found that the interactions in transverse direction is much more sensitive than that in the longitudinal direction. Finally, the TF-probe was used to measure the friction coefficient of a silica–silica interface.
【 授权许可】
CC BY
© 2015 by the authors; licensee MDPI, Basel, Switzerland.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190006404ZK.pdf | 3496KB | download |