期刊论文详细信息
Polymers
A Design-Oriented Combined Model (7 MPa to 190 MPa) for FRP-Confined Circular Short Columns
Zehra Canan Girgin3  Konuralp Girgin1  Alper Ilki2 
[1]Civil Engineering Faculty, Istanbul Technical University, Istanbul 34469, Turkey
[2]
[3]id="af1-polymers-07-01489">Structural Systems Division, Architecture Faculty, Yildiz Technical University, Istanbul 34349, Turk
[4]Structural Systems Division, Architecture Faculty, Yildiz Technical University, Istanbul 34349, Turkey
关键词: confined concrete;    FRP;    strength;    strain;    design oriented model;    Hoek-Brown;    UHSC;    UHPC;   
DOI  :  10.3390/polym7101489
来源: mdpi
PDF
【 摘 要 】

This study addresses a design oriented combined model to predict the ultimate strengths and ultimate strains in an extensive range of unconfined strength (7 to 190 MPa) for the axially loaded fiber-reinforced polymer (FRP)-wrapped circular short columns. Modified Hoek-Brown strength criterion, which was previously extended to FRP-confined concrete from 7 to 108 MPa, is revisited and verified. An empirical strength model beyond 108 MPa encompassing ultra-high strength concrete (UHSC) and ultra-high performance concrete (UHPC) data, as well as empirical strain models, are defined to accomplish the design oriented combined model. This article especially focuses on the verification of the proposed strain models. The assessment performances of those models for carbon FRP (CFRP) and glass FRP (GFRP) confinement are compared with specific models in the current literature. Strength and strain predictions for UHSC and UHPC are integrated into the design oriented combined model as well. The assessments on this model agree with the experimental results in high accuracy.

【 授权许可】

CC BY   
© 2015 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190005780ZK.pdf 4407KB PDF download
  文献评价指标  
  下载次数:27次 浏览次数:22次