期刊论文详细信息
Remote Sensing
The Potential of Pan-Sharpened EnMAP Data for the Assessment of Wheat LAI
Bastian Siegmann1  Thomas Jarmer2  Florian Beyer2  Manfred Ehlers2  Saskia Foerster2  Véronique Carrere2  Michael Rast2  Karl Staenz2  Clement Atzberger2  Magaly Koch2 
[1] Institute for Geoinformatics and Remote Sensing, University of Osnabrueck, Barbarastraße 22b, Osnabrueck 49076, Germany;
关键词: hyperspectral;    aisaEAGLE;    EnMAP;    Sentinel-2;    pan-sharpening;    partial least squares regression;    leaf area index;   
DOI  :  10.3390/rs71012737
来源: mdpi
PDF
【 摘 要 】

In modern agriculture, the spatially differentiated assessment of the leaf area index (LAI) is of utmost importance to allow an adapted field management. Current hyperspectral satellite systems provide information with a high spectral but only a medium spatial resolution. Due to the limited ground sampling distance (GSD), hyperspectral satellite images are often insufficient for precision agricultural applications. In the presented study, simulated hyperspectral data of the upcoming Environmental Mapping and Analysis Program (EnMAP) mission (30 m GSD) covering an agricultural region were pan-sharpened with higher resolution panchromatic aisaEAGLE (airborne imaging spectrometer for applications EAGLE) (3 m GSD) and simulated Sentinel-2 images (10 m GSD) using the spectral preserving Ehlers Fusion. As fusion evaluation criteria, the spectral angle (αspec) and the correlation coefficient (R) were calculated to determine the spectral preservation capability of the fusion results. Additionally, partial least squares regression (PLSR) models were built based on the EnMAP images, the fused datasets and the original aisaEAGLE hyperspectral data to spatially predict the LAI of two wheat fields. The aisaEAGLE model provided the best results (R2cv = 0.87) followed by the models built with the fused datasets (EnMAP–aisaEAGLE and EnMAP–Sentinel-2 fusion each with a R2cv of 0.75) and the simulated EnMAP data (R2cv = 0.68). The results showed the suitability of pan-sharpened EnMAP data for a reliable spatial prediction of LAI and underlined the potential of pan-sharpening to enhance spatial resolution as required for precision agriculture applications.

【 授权许可】

CC BY   
© 2015 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190005771ZK.pdf 6354KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:65次