Forests | |
Multiple-Use Zoning Model for Private Forest Owners in Agricultural Landscapes: A Case Study | |
Benoit Truax1  Daniel Gagnon1  France Lambert1  Julien Fortier1  | |
[1] Fiducie de recherche sur la forêt des Cantons-de-l’Est/Eastern Townships Forest Research Trust, 1 rue Principale, St-Benoît-du-Lac, QC J0B 2M0, Canada; E-Mails: | |
关键词:
ecosystem services;
forest conservation and restoration;
forest ecosystem management;
land use;
priority areas;
hybrid poplar bioenergy buffer;
agroforestry;
enrichment and under planting;
|
|
DOI : 10.3390/f6103614 | |
来源: mdpi | |
【 摘 要 】
Many small-scale private forest owners increasingly focus their management on amenity functions rather than on wood production functions. This paradigm shift is an opportunity to implement novel forestry management approaches, such as forested land zoning. Forest zoning consists in separating the land base in three zones that have different management objectives: (1) conservation zones; (2) ecosystem management zones; and (3) intensive production zones, which locally increase productivity, as a trade off to increase the land area dedicated to conservation and ecosystem management. We evaluate the ecological feasibility of implementing forest zoning on a private property (216 ha) at St-Benoît-du-Lac, Québec (Canada) characterised by agricultural and forest land uses. As a basis for delineating conservation and ecosystem management zones, historical and contemporary data and facts on forest composition and dynamics were reviewed, followed by a detailed forest vegetation analysis of forest communities. Delineating intensive production zones was straightforward, as fertile agricultural field margins located downslope were used to establish multifunctional hybrid poplar buffers. At St-Benoît-du-Lac, a realistic zoning scenario would consist of (1) conservation zones covering 25% of the forestland (37 ha); (2) ecosystem management zones covering 75% of the forestland (113 ha, including restoration zones on 24 ha); and (3) intensive production zones on 2.8 ha. Based on a yield projection of 13 t/ha/year for hybrid poplars, only 5.6% of agricultural field areas would need to be converted into agroforestry systems to allow for the loss of wood production in a conservation zone of 37 ha of forest. Ecosystem services provision following the implementation of zoning would include increased habitat quality, biodiversity protection and enhancement (by restoration of some tree species), carbon storage, non-point source aquatic pollution control, local biomass production for heating, and increased forest economic value.
【 授权许可】
CC BY
© 2015 by the authors; licensee MDPI, Basel, Switzerland.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190005241ZK.pdf | 2201KB | download |