期刊论文详细信息
Forests
Biomass Stock and Carbon Sequestration in a Chronosequence of Pinus massoniana Plantations in the Upper Reaches of the Yangtze River
Meta Francis Justine2  Wanqin Yang2  Fuzhong Wu2  Bo Tan2  Muhammad Naeem Khan1  Yeyi Zhao2 
[1] College of Forestry, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China; E-Mail:;Key Laboratory of Ecological Forestry Engineering in Sichuan Province, Institute of Ecology & Forestry, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, China; E-Mails:
关键词: Pinus massoniana;    stand age;    aboveground biomass;    carbon sequestration;    subtropical sub-humid forest;   
DOI  :  10.3390/f6103665
来源: mdpi
PDF
【 摘 要 】

Planted forest plays a significant role in carbon sequestration and climate change mitigation; however, little information has been available on the distribution patterns of carbon pools with stand ages in Pinus massoniana Plantations. We investigated the biomass stock and carbon sequestration across a chronosequence (3-, 5-, 7-, 9-, 12-, 15-, 19-, 29-, 35- and 42-year) of stands with the main objectives: (1) to determine the biomass and carbon stock of the forest ecosystem; and (2) to identify factors influencing their distribution across the age series. Simple random sampling was used for collecting field data in the ten (10) stand ages. Three 20 × 20 m standard plots were laid out in February 2015 across the chronosequence. The diameter at breast height (DBH) and tree height (H) of each tree within each plot were measured using calipers and height indicator. Sub-plots of 2 × 2 m were established in each main plot for collecting soil samples at a 0–30- and 30–60-cm depth. Plantation biomass increased with increasing stand ages, ranging from 0.84 tonnes per hectare (t·ha−1) in the three-year stand to 252.35 t·ha−1 in the 42-year stand. The aboveground biomass (AGB) contributed 86.51%; the maximum value is 300-times the minimum value. Carbon concentrations and storage in mineral soil decreased with increasing soil depth, but were controlled by the management history of the ecosystem. The total ecosystem carbon storage varies with stand ages, ranging from 169.90 t·ha−1 in the five-year plantation to 326.46 t·ha−1 in the 42-year plantation, of which 80.29% comes from the mineral soil carbon and 19.71% from the vegetation. The ratio of the total carbon sequestration by the 42-year to the three-year stand was 1.70, implying substantial amounts of carbon accumulation during the transition period from young to mature-aged trees. The forest ecosystem had the capacity of storing up to 263.16 t·ha−1 carbon, assisting in mitigating climate change by sequestrating 965.83 t·ha−1 of CO2 equivalents, indicating that the forest is an important carbon sink.

【 授权许可】

CC BY   
© 2015 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190005234ZK.pdf 762KB PDF download
  文献评价指标  
  下载次数:20次 浏览次数:15次