期刊论文详细信息
Entropy
Quantifying Emergent Behavior of Autonomous Robots
Georg Martius2  Eckehard Olbrich1 
[1] Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany; E-Mail:;IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
关键词: excess entropy;    mutual information;    predictive information;    quantification;    autonomous robots;    behavior;    correlation integral;   
DOI  :  10.3390/e17107266
来源: mdpi
PDF
【 摘 要 】

Quantifying behaviors of robots which were generated autonomously from task-independent objective functions is an important prerequisite for objective comparisons of algorithms and movements of animals. The temporal sequence of such a behavior can be considered as a time series and hence complexity measures developed for time series are natural candidates for its quantification. The predictive information and the excess entropy are such complexity measures. They measure the amount of information the past contains about the future and thus quantify the nonrandom structure in the temporal sequence. However, when using these measures for systems with continuous states one has to deal with the fact that their values will depend on the resolution with which the systems states are observed. For deterministic systems both measures will diverge with increasing resolution. We therefore propose a new decomposition of the excess entropy in resolution dependent and resolution independent parts and discuss how they depend on the dimensionality of the dynamics, correlations and the noise level. For the practical estimation we propose to use estimates based on the correlation integral instead of the direct estimation of the mutual information based on next neighbor statistics because the latter allows less control of the scale dependencies. Using our algorithm we are able to show how autonomous learning generates behavior of increasing complexity with increasing learning duration.

【 授权许可】

CC BY   
© 2015 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190004417ZK.pdf 6303KB PDF download
  文献评价指标  
  下载次数:21次 浏览次数:55次