期刊论文详细信息
Sensors
Vehicle Classification Using the Discrete Fourier Transform with Traffic Inductive Sensors
José J. Lamas-Seco2  Paula M. Castro1  Adriana Dapena2  Francisco J. Vazquez-Araujo2 
[1] Grupo de Tecnoloxía Electrónica e Comunicacións (GTEC), Departamento de Electrónica e Sistemas, Facultade de Informática, Universidade da Coruña, Campus da Coruña, 15071 A Coruña, Spain;
关键词: analytical methods;    data acquisition;    inductive loop detectors;    intelligent transportation systems;    sensor applications;    sensor devices;    sensor modeling;    signal processing;    software for sensors;    traffic applications;   
DOI  :  10.3390/s151027201
来源: mdpi
PDF
【 摘 要 】

Inductive Loop Detectors (ILDs) are the most commonly used sensors in traffic management systems. This paper shows that some spectral features extracted from the Fourier Transform (FT) of inductive signatures do not depend on the vehicle speed. Such a property is used to propose a novel method for vehicle classification based on only one signature acquired from a sensor single-loop, in contrast to standard methods using two sensor loops. Our proposal will be evaluated by means of real inductive signatures captured with our hardware prototype.

【 授权许可】

CC BY   
© 2015 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190004404ZK.pdf 2733KB PDF download
  文献评价指标  
  下载次数:19次 浏览次数:13次