期刊论文详细信息
Remote Sensing
Using RPAS Multi-Spectral Imagery to Characterise Vigour, Leaf Development, Yield Components and Berry Composition Variability within a Vineyard
Clara Rey-Caramés1  María P. Diago1  M. Pilar Martín2  Agustín Lobo3  Javier Tardaguila1  Mutlu Ozdogan4  Yoshio Inoue4 
[1] Instituto de Ciencias de la Vid y del Vino (University of La Rioja, CSIC, Gobierno de La Rioja), Finca La Grajera, Carretera de Burgos Km 6, Logroño 26007, Spain; E-Mails:;Instituto de Economía, Geografía y Demografía. Centro de Ciencias Humanas y Sociales, CSIC, Albasanz 26–28, Madrid 28037, Spain; E-Mail:;Institute of Earth Sciences Jaume Almera, ICTJA-CSIC, Lluis Sole Sabaris s/n, Barcelona 08028, Spain; E-Mail:Instituto de Ciencias de la Vid y del Vino (University of La Rioja, CSIC, Gobierno de La Rioja), Finca La Grajera, Carretera de Burgos Km 6, Logroño 26007, Spain;
关键词: precision viticulture;    remote sensing;    remotely piloted aerial system;    spectral indices;    kappa index;   
DOI  :  10.3390/rs71114458
来源: mdpi
PDF
【 摘 要 】

Implementation of precision viticulture techniques requires the use of emerging sensing technologies to assess the vineyard spatial variability. This work shows the capability of multispectral imagery acquired from a remotely piloted aerial system (RPAS), and the derived spectral indices to assess the vegetative, productive, and berry composition spatial variability within a vineyard (Vitis vinifera L.). Multi-spectral imagery of 17 cm spatial resolution was acquired using a RPAS. Classical vegetation spectral indices and two newly defined normalised indices, NVI1 = (R802 − R531)/(R802 + R531) and NVI2 = (R802 − R570)/(R802 + R570), were computed. Their spatial distribution and relationships with grapevine vegetative, yield, and berry composition parameters were studied. Most of the spectral indices and field data varied spatially within the vineyard, as showed through the variogram parameters. While the correlations were significant but moderate among the spectral indices and the field variables, the kappa index showed that the spatial pattern of the spectral indices agreed with that of the vegetative variables (0.38–0.70) and mean cluster weight (0.40). These results proved the utility of the multi-spectral imagery acquired from a RPAS to delineate homogeneous zones within the vineyard, allowing the grapegrower to carry out a specific management of each subarea.

【 授权许可】

CC BY   
© 2015 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190004018ZK.pdf 1384KB PDF download
  文献评价指标  
  下载次数:20次 浏览次数:18次