Electronics | |
Organic Bioelectronic Tools for Biomedical Applications | |
Susanne Ller2  Ben Libberton2  Agneta Richter-Dahlfors1  Ruth Shinar2  | |
[1] Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171-77 Stockholm, Sweden; | |
关键词: organic bioelectronics; nanomedicine; regenerative medicine; drug delivery; tissue engineering; tissue microbiology; | |
DOI : 10.3390/electronics4040879 | |
来源: mdpi | |
【 摘 要 】
Organic bioelectronics forms the basis of conductive polymer tools with great potential for application in biomedical science and medicine. It is a rapidly growing field of both academic and industrial interest since conductive polymers bridge the gap between electronics and biology by being electronically and ionically conductive. This feature can be employed in numerous ways by choosing the right polyelectrolyte system and tuning its properties towards the intended application. This review highlights how active organic bioelectronic surfaces can be used to control cell attachment and release as well as to trigger cell signaling by means of electrical, chemical or mechanical actuation. Furthermore, we report on the unique properties of conductive polymers that make them outstanding materials for labeled or label-free biosensors. Techniques for electronically controlled ion transport in organic bioelectronic devices are introduced, and examples are provided to illustrate their use in self-regulated medical devices. Organic bioelectronics have great potential to become a primary platform in future bioelectronics. We therefore introduce current applications that will aid in the development of advanced
【 授权许可】
CC BY
© 2015 by the authors; licensee MDPI, Basel, Switzerland.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190003943ZK.pdf | 1472KB | download |