期刊论文详细信息
Water
Sediment Trapping by Emerged Channel Bars in the Lowermost Mississippi River during a Major Flood
Bo Wang2  Y. Jun Xu1 
[1] School of Renewable Natural Resources, Louisiana State University Agricultural Center, 227 Highland Road, Baton Rouge, LA 70803, USA; E-Mail
关键词: channel bars;    fluvial geomorphology;    channel dynamics;    sediment transport;    lowermost Mississippi River;   
DOI  :  10.3390/w7116079
来源: mdpi
PDF
【 摘 要 】

The formation of channel bars has been recognized as the most significant sediment response to the highly trained Mississippi River (MR). However, no quantitative study exists on the dynamics of emerged channel bars and associated sediment accumulation in the last 500-kilometer reach of the MR from the Gulf of Mexico outlet, also known as the lowermost Mississippi River. Such knowledge is especially critical for riverine sediment management to impede coastal land loss in the Mississippi River Delta. In this study, we utilized a series of satellite images taken from August 2010 to January 2012 to assess the changes in surface area and volume of three large emerged channel bars in the lowermost MR following an unprecedented spring flood in 2011. River stage data were collected to develop a rating curve of surface areas detected by satellite images with flow conditions for each of the three bars. A uniform geometry associated with the areal change was assumed to estimate the bar volume changes. Our study reveals that the 2011 spring flood increased the surface area of the bars by 3.5% to 11.1%, resulting in a total surface increase of 7.3%, or 424,000 m2. Based on the surface area change, we estimated a total bar volume increase of 4.4%, or 1,219,900 m3. This volume increase would be equivalent to a sediment trapping of approximately 1.0 million metric tons, assuming a sediment bulk density of 1.2 metric tons per cubic meter. This large quantity of sediment is likely an underestimation because of the neglect of subaqueous bar area change and the assumption of a uniform geometry in volume estimation. Nonetheless, the results imply that channel bars in the lowermost MR are capable of capturing a substantial amount of sediment during floods, and that a thorough assessment of their long-term change can provide important insights into sediment trapping in the lowermost MR as well as the feasibility of proposed river sediment diversions.

【 授权许可】

CC BY   
© 2015 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190003836ZK.pdf 2283KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:17次