期刊论文详细信息
Water
Impacts of Climate Change on the Hydrological Regime of the Danube River and Its Tributaries Using an Ensemble of Climate Scenarios
Judith C. Stagl1  Fred F. Hattermann2 
[1] Potsdam Institute for Climate Impact Research, Germany, P.O. Box 60 12 03, Potsdam 14412, Germany; E-Mail
关键词: climate change;    climate change impact;    Europe;    Danube;    modeling;    hydrology;    river;    runoff;    streamflow;    water;   
DOI  :  10.3390/w7116139
来源: mdpi
PDF
【 摘 要 】

Information about the potential impacts of climate change on river runoff is needed to prepare efficient adaptation strategies. This study presents scenario projections for the future hydrological runoff regime in the Danube River Basin. The eco-hydrological watershed model Soil and Water Integrated Model (SWIM) was applied for the entire Danube River catchment, considering 1224 subbasins. After calibration and validation of the model, a set of high-resolution climate projections (bias-corrected and non-bias-corrected) served as meteorological drivers with which future daily river discharge under different climate warming scenario conditions was simulated. Despite existing uncertainties, robust trends could be identified. In the next 30 years, the seasonal stream-flow regime of the Danube and its tributaries is projected to change considerably. Our results show a general trend towards a decrease in summer runoff for the whole Danube basin and, additionally, in autumn runoff for the Middle and Lower Danube basin, aggravating the existing low flow periods. For the winter and early spring seasons, mainly January–March, an increase in river runoff is projected. Greater uncertainties show up in particular for winter runoff in the Dinaric Alps and the Lower Danube basin. The existing trends become very distinct until the end of the 21st century, especially for snow-influenced river regimes.

【 授权许可】

CC BY   
© 2015 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190003794ZK.pdf 19221KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:28次