期刊论文详细信息
Nanomaterials
Smart Mesoporous Nanomaterials for Antitumor Therapy
Marina Martínez-Carmona1  Montserrat Colilla1  Maria Vallet-Regí1  Jordi Sort2 
[1] Department of Inorganic and Bioinorganic Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Sanitary Research Institute “Hospital 12 de Octubre” i+12, Ramón y Cajal Square, S/N, Madrid 28040, Spain; E-Mail:;Department of Inorganic and Bioinorganic Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Sanitary Research Institute “Hospital 12 de Octubre” i+12, Ramón y Cajal Square, S/N, Madrid 28040, Spain; E-Mail
关键词: mesoporous silica nanoparticles;    cancer treatment;    passive targeting;    active targeting;    stimuli-responsive drug delivery;   
DOI  :  10.3390/nano5041906
来源: mdpi
PDF
【 摘 要 】

The use of nanomaterials for the treatment of solid tumours is receiving increasing attention by the scientific community. Among them, mesoporous silica nanoparticles (MSNs) exhibit unique features that make them suitable nanocarriers to host, transport and protect drug molecules until the target is reached. It is possible to incorporate different targeting ligands to the outermost surface of MSNs to selectively drive the drugs to the tumour tissues. To prevent the premature release of the cargo entrapped in the mesopores, it is feasible to cap the pore entrances using stimuli-responsive nanogates. Therefore, upon exposure to internal (pH, enzymes, glutathione, etc.) or external (temperature, light, magnetic field, etc.) stimuli, the pore opening takes place and the release of the entrapped cargo occurs. These smart MSNs are capable of selectively reaching and accumulating at the target tissue and releasing the entrapped drug in a specific and controlled fashion, constituting a promising alternative to conventional chemotherapy, which is typically associated with undesired side effects. In this review, we overview the recent advances reported by the scientific community in developing MSNs for antitumor therapy. We highlight the possibility to design multifunctional nanosystems using different therapeutic approaches aimed at increasing the efficacy of the antitumor treatment.

【 授权许可】

CC BY   
© 2015 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190003715ZK.pdf 1621KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:13次