期刊论文详细信息
Remote Sensing
Classification of C3 and C4 Vegetation Types Using MODIS and ETM+ Blended High Spatio-Temporal Resolution Data
Xiaolong Liu2  Yanchen Bo2  Jian Zhang2  Yaqian He2  Xin Li1  Yuei-An Liou1  Qinhuo Liu1  Dar Roberts1  Alfredo R. Huete1 
[1] State Key Laboratory of Remote Sensing Science, Research Center for Remote Sensing and GIS, and School of Geography, Beijing Normal University, Beijing 100875, China;;State Key Laboratory of Remote Sensing Science, Research Center for Remote Sensing and GIS, and School of Geography, Beijing Normal University, Beijing 100875, China; E-Mails:
关键词: C3 and C4 classification;    NDVI time-series;    fusion;    MODIS;    Landsat TM/ETM+;   
DOI  :  10.3390/rs71115244
来源: mdpi
PDF
【 摘 要 】

The distribution of C3 and C4 vegetation plays an important role in the global carbon cycle and climate change. Knowledge of the distribution of C3 and C4 vegetation at a high spatial resolution over local or regional scales helps us to understand their ecological functions and climate dependencies. In this study, we classified C3 and C4 vegetation at a high resolution for spatially heterogeneous landscapes. First, we generated a high spatial and temporal land surface reflectance dataset by blending MODIS (Moderate Resolution Imaging Spectroradiometer) and ETM+ (Enhanced Thematic Mapper Plus) data. The blended data exhibited a high correlation (R2 = 0.88) with the satellite derived ETM+ data. The time-series NDVI (Normalized Difference Vegetation Index) data were then generated using the blended high spatio-temporal resolution data to capture the phenological differences between the C3 and C4 vegetation. The time-series NDVI revealed that the C3 vegetation turns green earlier in spring than the C4 vegetation, and senesces later in autumn than the C4 vegetation. C4 vegetation has a higher NDVI value than the C3 vegetation during summer time. Based on the distinguished characteristics, the time-series NDVI was used to extract the C3 and C4 classification features. Five features were selected from the 18 classification features according to the ground investigation data, and subsequently used for the C3 and C4 classification. The overall accuracy of the C3 and C4 vegetation classification was 85.75% with a kappa of 0.725 in our study area.

【 授权许可】

CC BY   
© 2015 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190003359ZK.pdf 7566KB PDF download
  文献评价指标  
  下载次数:16次 浏览次数:20次