期刊论文详细信息
Polymers
Synthesis of ABA Tri-Block Co-Polymer Magnetopolymersomes via Electroporation for Potential Medical Application
Jennifer Bain2  Matthew E. Berry1  Catherine E. Dirks1  Sarah S. Staniland1 
[1] Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
关键词: ABA tri-block co-polymer;    polymersomes;    magnetic nanoparticles;    electroporation;    biomedicine;    bioinspired;   
DOI  :  10.3390/polym7121529
来源: mdpi
PDF
【 摘 要 】

The ABA tri-block copolymer poly(2-methyloxazoline)–poly(dimethylsiloxane)–poly(2-methyloxazoline) (PMOXA–PDMS–PMOXA) is known for its capacity to mimic a bilayer membrane in that it is able to form vesicular polymersome structures. For this reason, it is the subject of extensive research and enables the development of more robust, adaptable and biocompatible alternatives to natural liposomes for biomedical applications. However, the poor solubility of this polymer renders published methods for forming vesicles unreproducible, hindering research and development of these polymersomes. Here we present an adapted, simpler method for the production of PMOXA–PDMS–PMOXA polymersomes of a narrow polydispersity (45 ± 5.8 nm), via slow addition of aqueous solution to a new solvent/polymer mixture. We then magnetically functionalise these polymersomes to form magnetopolymersomes via in situ precipitation of iron-oxide magnetic nanoparticles (MNPs) within the PMOXA–PDMS–PMOXA polymersome core and membrane. This is achieved using electroporation to open pores within the membrane and to activate the formation of MNPs. The thick PMOXA–PDMS–PMOXA membrane is well known to be relatively non-permeable when compared to more commonly used di-block polymer membranes due a distinct difference in both size and chemistry and therefore very difficult to penetrate using standard biological methods. This paper presents for the first time the application of electroporation to an ABA tri-block polymersome membrane (PMOXA–PDMS–PMOXA) for intravesicular in situ precipitation of uniform MNPs (2.6 ± 0.5 nm). The electroporation process facilitates the transport of MNP reactants across the membrane yielding in situ precipitation of MNPs. Further to differences in length and chemistry, a tri-block polymersome membrane structure differs from a natural lipid or di-block polymer membrane and as such the application and effects of electroporation on this type of polymersome is entirely novel. A mechanism is hypothesised to explain the final structure and composition of these biomedically applicable tri-block magnetopolymersomes.

【 授权许可】

CC BY   
© 2015 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190002397ZK.pdf 3898KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:19次