期刊论文详细信息
Entropy | |
An Optimal Segmentation Method Using Jensen–Shannon Divergence via a Multi-Size Sliding Window Technique | |
Qutaibeh D. Katatbeh1  José Martínez-Aroza2  Juan Francisco Gómez-Lopera3  David Blanco-Navarro3  | |
[1] Department of Mathematics and Statistics, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, JordanDepartamento de Matemática Aplicada, Universidad de Granada, Granada 18071, Spain;Departamento de Física Aplicada, Universidad de Granada, Granada 18071, Spain; | |
关键词: entropy; Jensen–Shannon divergence; image segmentation; entropic edge detection; multi-size window processing; | |
DOI : 10.3390/e17127858 | |
来源: mdpi | |
【 摘 要 】
In this paper we develop a new procedure for entropic image edge detection. The presented method computes the Jensen–Shannon divergence of the normalized grayscale histogram of a set of multi-sized double sliding windows over the entire image. The procedure presents a good performance in images with textures, contrast variations and noise. We illustrate our procedure in the edge detection of medical images.
【 授权许可】
CC BY
© 2015 by the authors; licensee MDPI, Basel, Switzerland.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190002204ZK.pdf | 9484KB | download |