期刊论文详细信息
Entropy
A Novel Approach to Canonical Divergences within Information Geometry
Nihat Ay1  Shun-ichi Amari2 
[1] Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, Leipzig 04103 , GermanyLaboratory for Mathematical Neuroscience, RIKEN Brain Science Institute, Wako-shi Hirosawa 2-1, Saitama 351-0198, Japan;
关键词: information geometry;    canonical divergence;    relative entropy;    α-divergence;    α-geodesic;    duality;    geodesic projection;   
DOI  :  10.3390/e17127866
来源: mdpi
PDF
【 摘 要 】

A divergence function on a manifold M defines a Riemannian metric g and dually coupled affine connections ∇ and . We propose a natural definition of a canonical divergence for a general, not necessarily flat, M by using the geodesic integration of the inverse exponential map. The new definition of a canonical divergence reduces to the known canonical divergence in the case of dual flatness. Finally, we show that the integrability of the inverse exponential map implies the geodesic projection property.

【 授权许可】

CC BY   
© 2015 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190001917ZK.pdf 440KB PDF download
  文献评价指标  
  下载次数:149次 浏览次数:77次