Touraivane1Touraivane;Robert Frouin;Stuart Phinn;Chris Roelfsema;Raphael M. Kudela;Xiaofeng Li" /> 期刊论文

期刊论文详细信息
Remote Sensing
A Statistical Algorithm for Estimating Chlorophyll Concentration in the New Caledonian Lagoon
Guillaume Wattelez3  Cຜile Dupouy1  Morgan Mangeas2  Jérôme Lefèvre2  rib-type="author">Touraivane1Touraivane3  Robert Frouin4  Stuart Phinn5  Chris Roelfsema5  Raphael M. Kudela5  Xiaofeng Li5 
[1] Aix-Marseille University, CNRS/INSU, University of Toulon, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, Marseille 13288, France;Institut de Recherche Pour le Développement (IRD), BP A5 98848 Nouméa CEDEX 98848, New Caledonia;Sciences and Technologies Department, University of New Caledonia, Nouville Campus BP R4, Nouméa CEDEX 98851, New Caledonia;Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA;;Sciences and Technologies Department, University of New Caledonia, Nouville Campus BP R4, Nouméa CEDEX 98851, New Caledonia
关键词: chlorophyll-a concentration;    MODerate resolution Imaging Spectroradiometer (MODIS);    ocean color;    remote sensing;    statistical algorithm;    oligotrophic waters;    New Caledonia;    coral lagoon;   
DOI  :  10.3390/rs8010045
来源: mdpi
PDF
【 摘 要 】

Spatial and temporal dynamics of phytoplankton biomass and water turbidity can provide crucial information about the function, health and vulnerability of lagoon ecosystems (coral reefs, sea grasses, etc.). A statistical algorithm is proposed to estimate chlorophyll-a concentration ([chl-a]) in optically complex waters of the New Caledonian lagoon from MODIS-derived “remote-sensing” reflectance (Rrs). The algorithm is developed via supervised learning on match-ups gathered from 2002 to 2010. The best performance is obtained by combining two models, selected according to the ratio of Rrs in spectral bands centered on 488 and 555 nm: a log-linear model for low [chl-a] (AFLC) and a support vector machine (SVM) model or a classic model (OC3) for high [chl-a]. The log-linear model is developed based on SVM regression analysis. This approach outperforms the classical OC3 approach, especially in shallow waters, with a root mean squared error 30% lower. The proposed algorithm enables more accurate assessments of [chl-a] and its variability in this typical oligo- to meso-trophic tropical lagoon, from shallow coastal waters and nearby reefs to deeper waters and in the open ocean.

【 授权许可】

CC BY   
© 2016 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190000230ZK.pdf 3120KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:5次