期刊论文详细信息
International Journal of Biochemistry and Molecular Biology
Computing gene expression data with a knowledge-based gene clustering approach
Sookyung Oh1  Jin Chen1  Bruce A. Rosa1  Beronda L. Montgomery1  Wensheng Qin1 
关键词: Bioinformatics;    Arabidopsis;    microarray;    clustering;    data mining;    light regulation;   
DOI  :  
学科分类:生物化学/生物物理
来源: e-Century Publishing Corporation
PDF
【 摘 要 】

Computational analysis methods for gene expression data gathered in microarray experiments can be used to identify the functions of previously unstudied genes. While obtaining the expression data is not a difficult task, interpreting and extracting the information from the datasets is challenging. In this study, a knowledge-based approach which identifies and saves important functional genes before filtering based on variability and fold change differences was utilized to study light regulation. Two clustering methods were used to cluster the filtered datasets, and clusters containing a key light regulatory gene were located. The common genes to both of these clusters were identified, and the genes in the common cluster were ranked based on their coexpression to the key gene. This process was repeated for 11 key genes in 3 treatment combinations. The initial filtering method reduced the dataset size from 22,814 probes to an average of 1134 genes, and the resulting common cluster lists contained an average of only 14 genes. These common cluster lists scored higher gene enrichment scores than two individual clustering methods. In addition, the filtering method increased the proportion of light responsive genes in the dataset from 1.8% to 15.2%, and the cluster lists increased this proportion to 18.4%. The relatively short length of these common cluster lists compared to gene groups generated through typical clustering methods or coexpression networks narrows the search for novel functional genes while increasing the likelihood that they are biologically relevant.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912140863082ZK.pdf 2064KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:20次