American Journal of Nuclear Medicine and Molecular Imaging | |
PET radiopharmaceuticals for probing enzymes in the brain | |
Paul Cumming1  Jason P Holland1  Neil Vasdev1  | |
关键词: Positron emission tomography; monoamines; second messengers; kinase inhibitors; esterases; | |
DOI : | |
学科分类:过敏症与临床免疫学 | |
来源: e-Century Publishing Corporation | |
【 摘 要 】
Biologically important processes in normal brain function and brain disease involve the action of various protein-based receptors, ion channels, transporters and enzymes. The ability to interrogate the location, abundance and activity of these entities in vivo using non-invasive molecular imaging can provide unprecedented information about the spatio-temporal dynamics of brain function. Indeed, positron emission tomography (PET) imaging is transforming our understanding of the central nervous system and brain disease. Great emphasis has historically been placed on developing radioligands for the non-invasive detection of neuroreceptors. In contrast, relatively few enzymes have been amenable to examination by PET imaging procedures based upon trapping or accumulation of enzymatic products, because only a subset of enzymes have sufficient catalytic rate to produce measureable accumulation within the practical time-limit of PET recordings. However, high affinity inhibitors are now serving as tracers for enzymes, particularly for measuring the abundance of enzymes mediating intracellular signal transduction in the brain, which offer a rich diversity of potential targets for drug discovery. The purpose of this review is to summarize well-known radiotracers for brain enzymes, and draw attention to recent developments in PET radiotracers for imaging signal transduction pathways in the brain. The review is organized by target class and focuses on structural chemistry of the best-established radiotracers identified in each class.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912140862645ZK.pdf | 1740KB | download |