期刊论文详细信息
Journal of Mathematical Sciences
Toric Resolution of Singularities in a Certain Class of $C^{infty}$ Functions and Asymptotic Analysis of Oscillatory Integrals
Nose, Toshihiro1  Kamimoto, Joe1 
关键词: Oscillatory integrals;    oscillation index and its multiplicity;    local zeta function;    toric resolution;    the classes $hat{mathcal E}[P](U)$ and $hat{mathcal E}(U)$;    asymptotic expansion;    Newton polyhedra.;   
DOI  :  
学科分类:数学(综合)
来源: University of Tokyo * Department of Mathematical Sciences
PDF
【 摘 要 】

InaseminalworkofA.N.Varchenko,thebehavioratinfinityofoscillatoryintegralswithrealanalyticphaseispreciselyinvestigatedbyusingthetheoryoftoricvarietiesbasedonthegeometryoftheNewtonpolyhedronofthephase.Thepurposeofthispaperistogeneralizehisresultstothecasethatthephaseiscontainedinacertainclassof$C^{infty}$functions.Thekeyinouranalysisisatoricresolutionofsingularitiesintheaboveclassof$C^{infty}$functions.Thepropertiesofpolesoflocalzetafunctions,whicharecloselyrelatedtothebehaviorofoscillatoryintegrals,arealsostudiedundertheassociatedsituation.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912090770034ZK.pdf 367KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:14次