Journal of Mathematical Sciences | |
Renormalization Group Analysis of Multi-Band Many-Electron Systems at Half-Filling | |
Kashima, Yohei1  | |
关键词: Many-electron system; renormalization group; the Hubbard model; zero-temperature limit.; | |
DOI : | |
学科分类:数学(综合) | |
来源: University of Tokyo * Department of Mathematical Sciences | |
【 摘 要 】
Renormalizationgroupanalysisformulti-bandmany-electronsystemsathalf-fillingatpositivetemperatureispresented.TheanalysisincludestheMatsubaraultra-violetintegrationandtheinfraredintegrationaroundthezerosetofthedispersionrelation.Themulti-scaleintegrationschemesareimplementedinafinite-dimensionalGrassmannalgebraindexedbydiscreteposition-timevariables.Inorderthatthemulti-scaleintegrationsarejustifiedinductively,variousscale-dependentestimatesonGrassmannpolynomialsareestablished.Weapplythesetheoriesinpracticetoprovethatforthehalf-filledHubbardmodelwithnearest-neighborhoppingonasquarelatticetheinfinite-volume,zero-temperaturelimitofthefreeenergydensityexistsasananalyticfunctionofthecouplingconstantinaneighborhoodoftheoriginifthesystemcontainsthemagneticflux$pi$(mod$2pi$)perplaquetteand$0$(mod$2pi$)throughthelargecirclesaroundtheperiodiclattice.CombinedwithLieb'sresultonthefluxphaseproblem([Lieb,E.H.,Phys.Rev.Lett.$f73$(1994),2158]),thistheoremimpliesthattheminimumfreeenergydensityofthefluxphaseproblemconvergestoananalyticfunctionofthecouplingconstantintheinfinite-volume,zero-temperaturelimit.Theproofofthetheoremisbasedonafour-bandformulationofthemodelHamiltonianandanextensionofGiuliani-Mastropietro'srenormalizationdesignedforthehalf-filledHubbardmodelonthehoneycomblattice([Giuliani,A.andV.Mastropietro,Commun.Math.Phys.$f293$(2010),301--346]).
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912090770030ZK.pdf | 1578KB | download |