期刊论文详细信息
Journal of Mathematical Sciences
Renormalization Group Analysis of Multi-Band Many-Electron Systems at Half-Filling
Kashima, Yohei1 
关键词: Many-electron system;    renormalization group;    the Hubbard model;    zero-temperature limit.;   
DOI  :  
学科分类:数学(综合)
来源: University of Tokyo * Department of Mathematical Sciences
PDF
【 摘 要 】

Renormalizationgroupanalysisformulti-bandmany-electronsystemsathalf-fillingatpositivetemperatureispresented.TheanalysisincludestheMatsubaraultra-violetintegrationandtheinfraredintegrationaroundthezerosetofthedispersionrelation.Themulti-scaleintegrationschemesareimplementedinafinite-dimensionalGrassmannalgebraindexedbydiscreteposition-timevariables.Inorderthatthemulti-scaleintegrationsarejustifiedinductively,variousscale-dependentestimatesonGrassmannpolynomialsareestablished.Weapplythesetheoriesinpracticetoprovethatforthehalf-filledHubbardmodelwithnearest-neighborhoppingonasquarelatticetheinfinite-volume,zero-temperaturelimitofthefreeenergydensityexistsasananalyticfunctionofthecouplingconstantinaneighborhoodoftheoriginifthesystemcontainsthemagneticflux$pi$(mod$2pi$)perplaquetteand$0$(mod$2pi$)throughthelargecirclesaroundtheperiodiclattice.CombinedwithLieb'sresultonthefluxphaseproblem([Lieb,E.H.,Phys.Rev.Lett.$f73$(1994),2158]),thistheoremimpliesthattheminimumfreeenergydensityofthefluxphaseproblemconvergestoananalyticfunctionofthecouplingconstantintheinfinite-volume,zero-temperaturelimit.Theproofofthetheoremisbasedonafour-bandformulationofthemodelHamiltonianandanextensionofGiuliani-Mastropietro'srenormalizationdesignedforthehalf-filledHubbardmodelonthehoneycomblattice([Giuliani,A.andV.Mastropietro,Commun.Math.Phys.$f293$(2010),301--346]).

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912090770030ZK.pdf 1578KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:16次