期刊论文详细信息
| Journal of Mathematical Sciences | |
| Local Zeta Functions for Non-degenerate Laurent Polynomials Over p-adic Fields | |
| León-Cardenal, E.1  Zúñiga-Galindo, W. A.1  | |
| 关键词: $p$-adic oscillatory integrals; Laurent polynomials; Igusa zeta function; Newton polytopes; non-degeneracy conditions at infinity.; | |
| DOI : | |
| 学科分类:数学(综合) | |
| 来源: University of Tokyo * Department of Mathematical Sciences | |
PDF
|
|
【 摘 要 】
Inthisarticle,westudylocalzetafunctionsattachedtoLaurentpolynomialsover$p$-adicfields,whicharenon-degeneratewithrespecttotheirNewtonpolytopesatinfinity.Asanapplicationweobtainasymptoticexpansionsfor$p$-adicoscillatoryintegralsattachedtoLaurentpolynomials.Weshowtheexistenceoftwodifferentasymptoticexpansionsfor$p$-adicoscillatoryintegrals,onewhentheabsolutevalueoftheparameterapproachesinfinity,theotherwhentheabsolutevalueoftheparameterapproacheszero.ThesetwoasymptoticexpansionsarecontrolledbythepolesoftwistedlocalzetafunctionsofIgusatype.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912090769993ZK.pdf | 236KB |
PDF