| Journal of Mathematical Sciences | |
| A Shintani-type formula for Gross--Stark units over function fields | |
| Dasgupta, Samit1  Miller, Alison1  | |
| 关键词: asymptotic behavior; | |
| DOI : | |
| 学科分类:数学(综合) | |
| 来源: University of Tokyo * Department of Mathematical Sciences | |
PDF
|
|
【 摘 要 】
Let$F$beatotallyrealnumberfieldofdegree$n$,andlet$H$beafiniteabelianextensionof$F$.Let$p$denoteaprimeidealof$F$thatsplitscompletelyin$H$.FollowingBrumerandStark,Tateconjecturedtheexistenceofa$p$-unit$u$in$H$whose$p$-adicabsolutevaluesarerelatedinaprecisewaytothepartialzeta-functionsoftheextension$H/F$.Grosslaterrefinedthisconjecturebyproposingaformulaforthe$p$-adicnormoftheelement$u$.Recently,usingmethodsofShintani,thefirstauthorrefinedtheconjecturefurtherbyproposinganexactformulafor$u$inthe$p$-adiccompletionof$H$.InthisarticlewestateandproveafunctionfieldanalogueofthisShintani-typeformula.Theroleofthetotallyrealfield$F$isplayedbythefunctionfieldofacurveoverafinitefieldinwhich$n$placeshavebeenremoved.Theseplacesrepresentthe``realplaces"of$F$.OurmethodofprooffollowsthatofHayes,whoprovedGross'sconjectureforfunctionfieldsusingthetheoryofDrinfeldmodulesandtheirassociatedexponentialfunctions.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912090769920ZK.pdf | 217KB |
PDF