期刊论文详细信息
Kodai Mathematical Journal
Teichmüller distance and Kobayashi distance on subspaces of the universal Teichmüller space
Masahiro Yanagishita1 
[1] Departments in Fundamental Science and Engineering Waseda University
关键词: Lorentz manifold;    Semi-Riemannian manifold;    Semi-Riemannian submersion;    Jacobi operator;    Osserman condition;    Indefinite $\mathcal{S}$-manifold;    Lorentz Sasakian manifold;    Kähler manifold;   
DOI  :  10.2996/kmj/1372337514
学科分类:数学(综合)
来源: Tokyo Institute of Technology, Department of Mathematics
PDF
【 摘 要 】

References(13)It is known that the Teichmüller distance on the universal Teichmüller space T coincides with the Kobayashi distance. For a metric subspace of T having a comparable complex structure with that of T, we can similarly consider whether or not the Teichmüller distance on the subspace coincides with the Kobayashi distance. In this paper, we give a sufficient condition for metric subspaces under which the problem above has a affirmative answer. Moreover, we introduce an example of such subspaces.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912080708027ZK.pdf 18KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:7次