期刊论文详细信息
Kodai Mathematical Journal | |
Nonexistence of nontrivial quasi-Einstein metrics | |
Yawei Chu1  | |
[1] School of Mathematics and Computational Science Fuyang Teachers College | |
关键词: Nonexistence; Quasi-Einstein; Gradient Ricci solitons; Gradient estimate; Smooth metric measure space; | |
DOI : 10.2996/kmj/1341401057 | |
学科分类:数学(综合) | |
来源: Tokyo Institute of Technology, Department of Mathematics | |
【 摘 要 】
References(18)Let (Mn, g, e–f dvolg) be a smooth metric measure space of dimension n. In this note, we first prove a nonexistence result for Mn with the Bakry-Émery Ricci tensor is bounded from below. Then we show that f ∈ L∞ (Mn, e–f dvol) and |∇f| ∈ L∞ (Mn, e–f dvol) are equivalent for complete gradient shrinking Ricci solitons. Furthermore, we prove that there is no non-Einstein shrinking soliton when the normalized function $\tilde f$ is non-positive.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912080708000ZK.pdf | 18KB | download |