期刊论文详细信息
Kodai Mathematical Journal
Nonexistence of nontrivial quasi-Einstein metrics
Yawei Chu1 
[1] School of Mathematics and Computational Science Fuyang Teachers College
关键词: Nonexistence;    Quasi-Einstein;    Gradient Ricci solitons;    Gradient estimate;    Smooth metric measure space;   
DOI  :  10.2996/kmj/1341401057
学科分类:数学(综合)
来源: Tokyo Institute of Technology, Department of Mathematics
PDF
【 摘 要 】

References(18)Let (Mn, g, e–f dvolg) be a smooth metric measure space of dimension n. In this note, we first prove a nonexistence result for Mn with the Bakry-Émery Ricci tensor is bounded from below. Then we show that f ∈ L∞ (Mn, e–f dvol) and |∇f| ∈ L∞ (Mn, e–f dvol) are equivalent for complete gradient shrinking Ricci solitons. Furthermore, we prove that there is no non-Einstein shrinking soliton when the normalized function $\tilde f$ is non-positive.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912080708000ZK.pdf 18KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:9次