| Kodai Mathematical Journal | |
| On the canonical Hermitian connection in nearly Kähler manifolds | |
| Luigi Vezzoni1  | |
| [1] Dipartimento di Matematica Università di Torino | |
| 关键词: Irreducible non-torus plane sextic; Fundamental group; Alexander-equivalent Zariski pair; | |
| DOI : 10.2996/kmj/1257948887 | |
| 学科分类:数学(综合) | |
| 来源: Tokyo Institute of Technology, Department of Mathematics | |
PDF
|
|
【 摘 要 】
References(16)In the present paper we prove that the Hermitian curvature tensor $¥tilde{R}$ associated to a nearly Kähler metric g always satisfies the second Bianchi identity $¥mathfrak{S}(¥tilde{¥nabla}_X¥tilde{R})$ (Y, Z, ·, ·) = 0 and that it satisfies the first Bianchi identity $¥mathfrak{S}¥tilde{R}$ (X, Y, Z, ·) = 0 if and only if g is a Kähler metric. Furthermore we characterize condition for $¥tilde{R}$ to be parallel with respect to the canonical Hermitian connection $¥tilde{¥nabla}$ in terms of the Riemann curvature tensor and in the last part of the paper we study the curvature of some generalizations of the nearly Kähler structure.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912080707935ZK.pdf | 2KB |
PDF