期刊论文详细信息
Kodai Mathematical Journal
A new characterization of submanifolds with parallel mean curvature vector in Sn+p
Abdênago Alves de Barros1  Aldir Chaves Brasil Jr.1  Luis Amancio Machado de Soursa Jr.1 
关键词: Mean curvature vector;    first eigenvalue;    Clifford torus;   
DOI  :  10.2996/kmj/1085143788
学科分类:数学(综合)
来源: Tokyo Institute of Technology, Department of Mathematics
PDF
【 摘 要 】

References(8)In this work we will consider compact submanifold Mn immersed in the Euclidean sphere Sn+p with parallel mean curvature vector and we introduce a Schrödinger operator L=−Δ+V, where Δ stands for the Laplacian whereas V is some potential on Mn which depends on n, p and h that are respectively, the dimension, codimension and mean curvature vector of Mn. We will present a gap estimate for the first eigenvalue μ1 of L, by showing that either μ1=0 or μ1≤−n(1+H2). As a consequence we obtain new characterizations of spheres, Clifford tori and Veronese surfaces that extend a work due to Wu [W] for minimal submanifolds.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912080707810ZK.pdf 2KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:5次