期刊论文详细信息
Climate Research
Long-term Bering Sea environmental variability revealed by a centennial-length biochronology of Pacific ocean perch Sebastes alutus
Thomas E. Helser1  Mary E. Matta1  Rachel Zuercher1  Christopher Gentry1  Christopher A. Underwood1  Wayne P. Hall1  Bryan A. Black1  Peter van der Sleen1  Vicki Hamilton1  Matthew P. Dzaugis1 
关键词: Otolith;    Chronology;    Growth increment;    Bering Sea;    Climate;    Pacific ocean perch;    Sebastes alutus;   
DOI  :  10.3354/cr01425
来源: Inter-Research Science Publishing
PDF
【 摘 要 】

ABSTRACT: The productivity and functioning of Bering Sea marine ecosystems are tightly coupled to decadal-scale environmental variability, as exemplified by the profound changes in community composition that followed the 1976-1977 shift from a cool to a warm climate regime. Longer-term ecosystem dynamics, including the extent to which this regime shift was exceptional in the context of the past century, remain poorly described due to a lack of multi-decadal biological time series. To explore the impact of decadal regime shifts on higher trophic levels, we applied dendrochronology (tree-ring science) techniques to the otolith growth-increment widths of Pacific ocean perch Sebastes alutus (POP) collected from the continental slope of the eastern Bering Sea. After crossdating, 2 chronology development techniques were applied: (1) a regional curve standardization (RCS) approach designed to retain as much low-frequency variability as possible, and (2) an individual-detrending approach that maximized interannual synchrony among samples. Both chronologies spanned the years 1919-2006 and were significantly (p < 0.001) and positively correlated with sea surface temperature (March-December). The RCS chronology showed a transition from relatively slow to fast growth after 1976-1977. In both chronologies, the highest observed growth values immediately followed the regime shift, suggesting that this event had a critical and lasting impact on growth of POP. This growth pulse was, however, not shared by a previously published yellowfin sole Limanda aspera chronology (1969-2006) from the eastern Bering Sea shelf, indicating species- or site-specific responses. Ultimately, these chronologies provide a long-term perspective and underscore the susceptibility of fish growth to extreme low-frequency events.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912080706575ZK.pdf 8KB PDF download
  文献评价指标  
  下载次数:26次 浏览次数:13次